全文获取类型
收费全文 | 238篇 |
免费 | 20篇 |
国内免费 | 2篇 |
专业分类
260篇 |
出版年
2022年 | 2篇 |
2021年 | 4篇 |
2020年 | 3篇 |
2019年 | 2篇 |
2017年 | 5篇 |
2016年 | 6篇 |
2015年 | 7篇 |
2014年 | 17篇 |
2013年 | 16篇 |
2012年 | 11篇 |
2011年 | 11篇 |
2010年 | 14篇 |
2009年 | 10篇 |
2008年 | 6篇 |
2007年 | 4篇 |
2006年 | 12篇 |
2005年 | 7篇 |
2004年 | 5篇 |
2003年 | 6篇 |
2002年 | 4篇 |
2001年 | 11篇 |
2000年 | 4篇 |
1999年 | 7篇 |
1998年 | 3篇 |
1996年 | 5篇 |
1995年 | 3篇 |
1994年 | 3篇 |
1993年 | 2篇 |
1992年 | 3篇 |
1991年 | 4篇 |
1990年 | 1篇 |
1989年 | 3篇 |
1988年 | 1篇 |
1987年 | 1篇 |
1986年 | 7篇 |
1985年 | 1篇 |
1984年 | 2篇 |
1983年 | 3篇 |
1982年 | 2篇 |
1981年 | 7篇 |
1980年 | 1篇 |
1979年 | 11篇 |
1978年 | 11篇 |
1977年 | 4篇 |
1975年 | 1篇 |
1974年 | 5篇 |
1973年 | 1篇 |
1969年 | 1篇 |
排序方式: 共有260条查询结果,搜索用时 15 毫秒
91.
92.
93.
Glutamine is an essential amino acid for enterocytes, especially in states of critical illness and injury. In several studies it has been speculated that the beneficial effects of glutamine are dependent on the route of supply (luminal or systemic). The aim of this study was to investigate the relevance of both routes of glutamine delivery to in vitro intestinal cells and to explore the molecular basis for proposed beneficial glutamine effects: (a) by determining the relative uptake of radiolabelled glutamine in Caco-2 cells; (b) by assessing the effect of glutamine on the proteome of Caco-2 cells using a 2D gel electrophoresis approach; and (c) by examining glutamine incorporation into cellular proteins using a new mass spectrometry-based method with stable isotope labelled glutamine. Results of this study show that exogenous glutamine is taken up by Caco-2 cells from both the apical and the basolateral side. Basolateral uptake consistently exceeds apical uptake and this phenomenon is more pronounced in 5-day-differentiated cells than in 15-day-differentiated cells. No effect of exogenous glutamine supply on the proteome was detected. However, we demonstrated that exogenous glutamine is incorporated into newly synthesized proteins and this occurred at a faster rate from basolateral glutamine, which is in line with the uptake rates. Interestingly, a large number of rapidly labelled proteins is involved in establishing cell-cell interactions. In this respect, our data may point to a molecular basis for observed beneficial effects of glutamine on intestinal cells and support results from studies with critically ill patients where parenteral glutamine supplementation is preferred over luminal supplementation. 相似文献
94.
95.
96.
97.
Using cultured cells from bovine and rat aortas, we have examined the possibility that endothelial cells might regulate the growth of vascular smooth muscle cells. Conditioned medium from confluent bovine aortic endothelial cells inhibited the proliferation of growth-arrested smooth muscle cells. Conditioned medium from exponential endothelial cells, and from exponential or confluent smooth muscle cells and fibroblasts, did not inhibit smooth muscle cell growth. Conditioned medium from confluent endothelial cells did not inhibit the growth of endothelial cells or fibroblasts. In addition to the apparent specificity of both the producer and target cell, the inhibitory activity was heat stable and not affected by proteases. It was sensitive flavobacterium heparinase but not to hyaluronidase or chondroitin sulfate ABC lyase. It thus appears to be a heparinlike substance. Two other lines of evidence support this conclusion. First, a crude isolate of glycosaminoglycans (TCA-soluble, ethanol-precipitable material) from endothelial cell-conditioned medium reconstituted in 20 percent serum inhibited smooth muscle cell growth; glycosaminoglycans isolated from unconditioned medium (i.e., 0.4 percent serum) had no effect on smooth muscle cell growth. No inhibition was seen if the glycosaminoglycan preparation was treated with heparinase. Second, exogenous heparin, heparin sulfate, chondroitin sulfate B (dermatan sulfate), chondroitin sulfate ABC, and hyaluronic acid were added to 20 percent serum and tested for their ability to inhibit smooth muscle cell growth. Heparin inhibited growth at concentrations as low as 10 ng/ml. Other glycosaminoglycans had no effect at doses up to 10 μg/ml. Anticoagulant and non- anticoagulant heparin were equally effective at inhibiting smooth muscle cell growth, as they were in vivo following endothelial injury (Clowes and Karnovsk. Nature (Lond.). 265:625-626, 1977; Guyton et al. Circ. Res. 46:625-634, 1980), and in vitro following exposure of smooth muscle cells to platelet extract (Hoover et al. Circ. Res. 47:578-583, 1980). We suggest that vascular endothelial cells may secrete a heparinlike substance in vivo which may regulate the growth of underlying smooth muscle cells. 相似文献
98.
99.
100.
Aniek C Bouwman Bruno D Valente Luc L G Janss Henk Bovenhuis Guilherme J M Rosa 《遗传、选种与进化》2014,46(1):2